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Abstract Image understanding requires not only individu-
ally estimating elements of the visual world but also captur-
ing the interplay among them. In this paper, we provide a
framework for placing local object detection in the context
of the overall 3D scene by modeling the interdependence of
objects, surface orientations, and camera viewpoint. Most
object detection methods consider all scales and locations in
the image as equally likely. We show that with probabilis-
tic estimates of 3D geometry, both in terms of surfaces and
world coordinates, we can put objects into perspective and
model the scale and location variance in the image. Our ap-
proach reflects the cyclical nature of the problem by allow-
ing probabilistic object hypotheses to refine geometry and
vice-versa. Our framework allows painless substitution of
almost any object detector and is easily extended to include
other aspects of image understanding. Our results confirm
the benefits of our integrated approach.
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1 Introduction

Consider the street scene depicted on Fig. 1. Most people
will have little trouble seeing that the green box in the mid-
dle contains a car. This is despite the fact that, shown in
isolation, these same pixels can just as easily be interpreted
as a person’s shoulder, a mouse, a stack of books, a balcony,
or a million other things! Yet, when we look at the entire
scene, all ambiguity is resolved—the car is unmistakably a
car. How do we do this?

There is strong psychophysical evidence (e.g. Biederman
1981; Torralba 2005) that context plays a crucial role in
scene understanding. In our example, the car-like blob is
recognized as a car because: (1) it’s sitting on the road, and
(2) it’s the “right” size, relative to other objects in the scene
(cars, buildings, pedestrians, etc.). Of course, the trouble
is that everything is tightly interconnected—a visual object
that uses others as its context will, in turn, be used as context
by these other objects. We recognize a car because it’s on the
road. But how do we recognize a road?—because there are
cars! How does one attack this chicken-and-egg problem?
What is the right framework for connecting all these pieces
of the recognition puzzle in a coherent and tractable man-
ner?

In this paper we will propose a unified approach for mod-
eling the contextual symbiosis between three crucial ele-
ments required for scene understanding: low-level object de-
tectors, rough 3D scene geometry, and approximate cam-
era position/orientation. Our main insight is to model the
contextual relationships between the visual elements, not in
the 2D image plane where they have been projected by the
camera, but within the 3D world where they actually reside.
Perspective projection obscures the relationships that are
present in the actual scene: a nearby car will appear much
bigger than a car far away, even though in reality they are
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Fig. 1 General object recognition cannot be solved locally, but re-
quires the interpretation of the entire image. In the above image, it’s
virtually impossible to recognize the car, the person and the road in
isolation, but taken together they form a coherent visual story

the same height. We “undo” the perspective projection and
analyze the objects in the space of the 3D scene.

1.1 Background

In its early days, computer vision had but a single grand
goal: to provide a complete semantic interpretation of an in-
put image by reasoning about the 3D scene that generated
it. Indeed, by the late 1970s there were several image under-
standing systems being developed, including such pioneer-
ing work as Brooks’ ACRONYM (1979), Hanson and Rise-
man’s VISIONS (1978), Ohta and Kanade’s outdoor scene
understanding system (1985), Barrow and Tenenbaum’s in-
trinsic images (1978), etc. For example, VISIONS was an
extremely ambitious system that analyzed a scene on many
interrelated levels including segments, 3D surfaces and vol-
umes, objects, and scene categories. However, because of
the heavy use of heuristics, none of these early systems were
particularly successful, which led people to doubt the very
goal of complete image understanding.

We believe that the vision pioneers were simply ahead
of their time. They had no choice but to rely on heuris-
tics because they lacked the computational resources to
learn the relationships governing the structure of our vi-
sual world. The advancement of learning methods in the
last decade brings renewed hope for a complete image un-
derstanding solution. However, the currently popular learn-

ing approaches are based on looking at small image win-
dows at all locations and scales to find specific objects. This
works wonderfully for face detection (Schneiderman 2004;
Viola and Jones 2004) (since the inside of a face is much
more important than the boundary) but is quite unreliable
for other types of objects, such as cars and pedestrians, es-
pecially at the smaller scales.

As a result, several researchers have recently begun to
consider the use of contextual information for object de-
tection. The main focus has been on modeling direct re-
lationships between objects and other objects (Kumar and
Hebert 2003; Murphy et al. 2003), regions (He et al. 2004;
Kumar and Hebert 2005; Tu et al. 2005) or scene cate-
gories (Murphy et al. 2003; Sudderth et al. 2005), all within
the 2D image. Going beyond the 2D image plane, Hoiem
et al. (2005) propose a mechanism for estimating rough
3D scene geometry from a single image and use this in-
formation as additional features to improve object detec-
tion. From low-level image cues, Torralba and Sinha (2001)
get a sense of the viewpoint and mean scene depth, which
provides a useful prior for object detection. Forsyth et al.
(1994) describe a method for geometric consistency of ob-
ject hypotheses in simple scenes using hard algebraic con-
straints. Others have also modeled the relationship between
the camera parameters and objects, requiring either a well-
calibrated camera (e.g. Jeong et al. 2001), a stationary sur-
veillance camera (e.g. Krahnstoever and Mendonça 2005),
or both (Greienhagen et al. 2000).

In this work, we draw on several of the previous tech-
niques: local object detection (Murphy et al. 2003; Dalal and
Triggs 2005), 3D scene geometry estimation (Hoiem et al.
2005), and camera viewpoint estimation. Our contribution is
a statistical framework that allows simultaneous inference of
object identities, surface orientations, and camera viewpoint
using a single image taken from an uncalibrated camera.

1.2 Overview

To evaluate our approach, we have chosen a very challeng-
ing dataset of outdoor images (Russell et al. 2005) that
contain cars and people, often partly occluded, over an ex-
tremely wide range of scales and in accidental poses (un-
like, for example, the framed photographs in Corel or Cal-
Tech datasets). Our goal is to demonstrate that substantial
improvement over standard low-level detectors can be ob-
tained by reasoning about the underlying 3D scene structure.

One way to think about what we are trying to achieve is to
consider the likely places in an image where an object (e.g. a
pedestrian) could be found (Fig. 2). Without considering the
3D structure of the scene, all image positions and scales are
equally likely (Fig. 2b)—this is what most object detectors
assume. But if we can estimate the rough surface geome-
try in the scene, this information can be used to adjust the
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Fig. 2 (Color online) Watch for pedestrians! In (b, d, f, g), we show
100 boxes sampled according to the available information. Given an
input image (a), a local object detector will expect to find a pedestrian
at any location/scale (b). However, given an estimate of rough surface
orientations (c), we can better predict where a pedestrian is likely to
be (d). We can estimate the camera viewpoint (e) from a few known

objects in the image. Conversely, knowing the camera viewpoint can
help in predict the likely scale of a pedestrian (f). The combined evi-
dence from surface geometry and camera viewpoint provides a power-
ful predictor of where a pedestrian might be (g), before we even run a
pedestrian detector! Red, green, and blue channels of (c) indicate con-
fidence in vertical, ground, and sky, respectively

probability of finding a pedestrian at a given image location
(Fig. 2d). Likewise, having an estimate of the camera view-
point (height and horizon position) supplies the likely scale
of an object in the image (Fig. 2f). Combining these two
geometric cues together gives us a rather tight prior likeli-
hood for the location and scale of a pedestrian, as in Fig. 2g.
This example is particularly interesting because this is still
only a prior—we have not applied a pedestrian detector yet.
Notice, as well, that the pattern of expected pedestrian de-
tections is reminiscent of typical human eye-tracking exper-
iments, where subjects are asked to search for a person in an
image.

Of course, just as scene and camera geometry can in-
fluence object detection, so can the detected objects alter
the geometry estimation. For example, if we know the lo-
cations/scales of some of the objects in the image, we can
use this to better estimate the camera viewpoint parameters
(see the 90% confidence bounds in Fig. 2e). In general, our
aim is to combine all these pieces of evidence into a single
coherent image interpretation framework.

The rest of the paper will be devoted to exploring our
two primary conjectures: (1) 3D reasoning improves object
detection, even when using a single image from an uncal-
ibrated camera, and (2) the more fully the scene is mod-
eled (more properties, more objects), the better the estimates
will be. We will first describe the mathematics of projec-
tive geometry as it relates to our problem (Sect. 2). We will
then define the probabilistic model used for describing the
relationships within the 3D scene (Sect. 3) and how it can
be learned (Sect. 4). In Sect. 5, we present quantitative and

qualitative results demonstrating the performance of our sys-
tem on a difficult dataset. Finally, in Sect. 6, we demonstrate
a new technique for estimating camera viewpoint and show
that it leads to improved accuracy in object detection.

This article is an extension of our earlier work (Hoiem et
al. 2006). The primary new contributions are an expanded
derivation and discussion of the object-viewpoint relation-
ship (Sect. 2) and a new algorithm for recovering camera
viewpoint based on image matching (Sect. 6). We also show
that our integrated scene model outperforms the use of a
simpler object position/size prior (Sect. 5).

2 Scene Projection

We assume that all objects of interest rest on the ground
plane. While this assumption may seem restrictive (cannot
find people on the rooftops), humans seem to make the same
assumption (we fail to notice the security standing on the
rooftops at political rallies unless we specifically look for
them).

Under this assumption, knowing only the camera height
and horizon line, we can estimate a grounded object’s height
in the scene from its top and bottom position in the im-
age (see Fig. 3). We will now derive this relationship us-
ing the following notation: pixel coordinates (u,v) rang-
ing from (0,0) at the bottom-left to (1,1) at the top-right;
world coordinates (x, y, z) with y being height and z being
depth; camera tilt θx ; focal length f ; camera optical cen-
ter (uc, vc); and camera height yc. By convention, the world
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Fig. 3 An object’s height in the
image can be determined from
its height in the world and the
viewpoint

coordinates are defined by zc = 0, xc = 0, and the ground
plane at y = 0. We assume zero roll (or that the image has
been rotated to account for roll) and define the horizon po-
sition v0 as the vanishing line of the ground plane in image
coordinates. In these coordinates, camera tilt (in radians) is
given by θx = 2 arctan vc−v0

2f
. We use a perspective projec-

tion model with zero skew and unit aspect ratio.
Using homogeneous coordinates, the transformation

from image coordinates to scene coordinates is given by
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From this, we can see that

y = z (f sin θx − (vc − v) cos θx) − fyc

(vc − v) sin θx + f cos θx

. (2)

Now suppose that we are given the top and bottom position
of an upright object (vt and vb , respectively). Since y = 0 at
vb, we can solve for object depth z:

z = fyc

f sin θx − (vc − vb) cos θx

. (3)

From (2) and (3), we can solve for object height y:

y = fyc(f sin θx−(vc−vt ) cos θx)/(f sin θx−(vc−vb) cos θx)−fyc

(vc−vt ) sin θx+f cos θx
.

(4)

If the camera tilt is small (e.g., if the horizon position is
within the image), we can greatly simplify this equation with
the following approximations: cos θx ≈ 1, sin θx ≈ θx , and
θx ≈ vc−v0

f
yielding:

y ≈ yc

vt − vb

v0 − vb

/(
1 + (vc − v0) (vc − vt ) /f 2

)
. (5)

Fig. 4 Illustration of horizon position v0, object bottom position vi ,
and object image height hi . With these and camera height yc , we can
estimate object world height yi using yi ≈ hiyc

vo−vi

In our experiments, we approximate further: (vc − v0) ×
(vc − vt )/f

2 ≈ 0, giving us

y ≈ yc

vt − vb

v0 − vb

. (6)

How valid are these approximations? Equation (6) is exact
when the camera is parallel to the ground plane (such that
θx = 0 and v0 = vc). Even when the camera is tilted, the
approximation is very good for the following reasons: tilt
tends to be small (vc − v0 ≈ 0; θx ≈ 0); the tops of detected
objects (pedestrians and cars in this paper) tend to be near
the horizon position since the photograph is often taken by a
person standing on the ground; and camera focal length f is
usually greater than 1 for the defined coordinates (f = 1.4
times image height is typical). However, the approximation
may be poor under the following conditions, listed roughly
in order of descending importance: object is not resting on
the ground; camera tilt is very large (e.g., overhead view); or
image taken with a wide-angle lens (f is small). In practice,
the approximation is sufficient to improve object detection
(Sect. 6) and to accurately estimate object size (Sect. 6) in
the LabelMe dataset.

To simplify the notation in the remainder of the paper, we
will refer to the world height, image height, and bottom po-
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sition in the image of object i as yi , hi , and vi , respectively.
As before, we denote horizon position v0 and camera height
yc. Using this notation (illustrated in Fig. 4), we have the
following relationship:

y ≈ yc

hi

v0 − vi

. (7)

3 Modeling the Scene

We want to determine the viewpoint, object identities, and
surface geometry of the scene from an image. We could es-
timate each independently, but our estimates will be much
more accurate if we take advantage of the interactions be-
tween the scene elements. We consider the objects (e.g.,
cars, pedestrians, background) and geometric surfaces to
each produce image evidence. The viewpoint, defined by the
horizon position in the image and the camera height, directly
affects the position and size of the objects in the image. In
turn, the objects directly affect nearby geometric surfaces.
We assume that local geometric surfaces are independent
given their corresponding object identities and that the ob-
ject identities are independent given the viewpoint. In Fig. 5,
we represent these conditional independence assumptions in
a graphical model, denoting objects as o, surface geometries
as g, object evidence as eo, geometry evidence as eg , and the
viewpoint as θ .

Our model implies the following decomposition:

P(θ,o,g, eg, eo)

= P(θ)
∏
i

P (oi |θ)P (eoi |oi)P (gi |oi)P (egi |gi). (8)

Fig. 5 Graphical model of conditional independence for viewpoint θ ,
object identities o, and the 3D geometry of surfaces g surrounding the
objects. Viewpoint describes the horizon position in the image and the
height of the camera in the 3D scene (in relation to the objects of inter-
est). Each image has n object hypotheses, where n varies by image. The
object hypothesis oi involves assigning an identity (e.g., pedestrian or
background) and a bounding box. The surface geometry gi describes
the 3D orientations of the ith object surface and nearby surfaces in the
scene

We can use Bayes rule to give the likelihood of the scene
conditioned on the image evidence:

P(θ,o,g|eg, eo)

= P(θ)
∏
i

P (oi |θ)
P (oi |eoi)

P (oi)

P (gi |egi)

P (gi)
. (9)

Our approach allows other researchers to easily integrate
their own detectors into our framework. A classifier for a
new object or an improved classifier for an existing one can
be incorporated, using its probabilistic output for P(oi |eoi).
Each addition or improvement to the estimated likelihoods
can then be used to improve the entire scene interpretation.
This model does imply the assumption that the image evi-
dence terms are independent, conditioned on the object or
surface labels. While this assumption may be violated when
objects are in close proximity, it provides modularity and
facilitates inference.

3.1 Viewpoint

The viewpoint θ involves two variables: the horizon posi-
tion in the image v0 and the camera height (in meters) yc.
We consider camera height and horizon position to be inde-
pendent a priori so that P(θ) = P(v0)P (yc). In our initial
experiments (Sects. 4 and 5), we model the horizon position
likelihood with a simple Gaussian prior. Similarly, for the
camera height yc, we estimate a prior distribution using ker-
nel density estimation over the yc values (computed based
on objects of known height in the scene) in a set of train-
ing images. We will later (Sect. 6) show how to estimate the
horizon position from image data directly, resulting in im-
proved viewpoint estimation and object detection.

Figure 6 displays the viewpoint prior (e) and an example
of the revised likelihood (f) when object and surface geome-
try evidences are considered. A priori, the most likely cam-
era height is 1.67 m, which happens to be eye level for a
typical adult male, and the most likely horizon position is
0.50. While the viewpoint prior does have high variance, it
is much more informative than the uniform distribution that
is implicitly assumed when scale is considered irrelevant.

3.2 Objects

An object candidate oi consists of a type ti ∈ {object,
background} (e.g. “pedestrian”) and a bounding box
bboxi = {ui, vi,wi, hi} (lower-left coordinate, width, and
height, respectively). The object term of our scene model is
composed as follows:

P(oi |eoi , θ) = P(ooi |eo)

P (oi)
P (oi |θ). (10)
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Fig. 6 (Color online) We begin with geometry estimates (b, c, d),
local object detection confidences (g, h), and a prior (e) on the view-
point. Using our model, we improve our estimates of the viewpoint
(f) and objects (i, j). In the viewpoint plots, the left axis is cam-
era height (meters), and the right axis is horizon position (measured
from the image bottom). The viewpoint peak likelihood increases

from 0.0037 a priori to 0.0503 after inference. At roughly the same
false positive (cars: cyan, peds: yellow) rate, the true detection (cars:
green, peds: red) rate doubles when the scene is coherently mod-
eled. Note that, though only detections above a threshold are shown,
detections with lower confidence exist for both the local and full model

At each position and scale (with discrete steps) in the image,
our window-based object detector outputs an estimate of the
class-conditional log-likelihood ratio

ci = log
P(Ii |ti = obj,bboxi )

P (Ii |ti �= obj,bboxi )
(11)

based on local image information Ii at the ith bounding
box.1 From these ratios and a prior P(oi), we can compute
the probability of an object occurring at a particular loca-
tion/scale

P(ti = obj,bboxi |Ii )

= 1

1 + exp[−ci − log P(oi )
1−P(oi )

] . (12)

Typically, researchers perform non-maxima suppression, as-
suming that high detection responses at neighboring posi-
tions could be due to an object at either of those positions
(but not both). Making the same assumption, we also ap-
ply non-maxima suppression, but we form a point distrib-
ution out of the non-maxima, rather than discarding them.
An object candidate is formed out of a group of closely
overlapping bounding boxes.2 The candidate’s likelihood
P(ti = obj|eo) is equal to the likelihood of the highest-
confidence bounding box, and the likelihoods of the loca-
tions given the object identity P(bboxi |ti = obj, eo) are di-

1To simplify notation, we omit parameter terms in likelihood estimates
and do not distinguish between estimated likelihoods and true likeli-
hoods.
2Each detector distinguishes between one object type and background
in our implementation. Separate candidates are created for each type
of object.

rectly proportional to P(ti = obj,bboxi |I). After threshold-
ing to remove detections with very low confidences from
consideration, a typical image will contain several dozen ob-
ject candidates (determining n of Fig. 5), each of which has
tens to hundreds of possible position/shapes.

An object’s height depends on its position when given
the viewpoint. Formally, P(oi |θ) ∝ p(hi |ti , vi, θ) (the pro-
portionality is due to the uniformity of P(ti , vi,wi |θ)).
From (7), if yi is normal, with parameters {μi,σi}, then
hi conditioned on {ti , vi, θ} is also normal, with parameters
μi(v0−vi )

yc
and σi(v0−vi )

yc
.

3.3 Surface Geometry

Most objects of interest can be considered as vertical sur-
faces supported by the ground plane. Estimates of the local
surface geometry could, therefore, provide additional evi-
dence for objects. To obtain the rough 3D surface orienta-
tions in the image, we apply the method of Hoiem et al.
(2005) (we use the publicly available executable), which
produces confidence maps for three main classes: “ground”,
“vertical”, and “sky”, and five subclasses of “vertical”: pla-
nar, facing “left”, “center”, and “right”, and non-planar
“solid” and “porous”. Figure 6b, c, d displays the confidence
maps for the three main surface labels.

We define gi to have three values corresponding to
whether the object surface is visible in the detection win-
dow and, if so, whether the ground is visible just below
the detection window. For example, we consider a car’s
geometric surface to be planar or non-planar solid and a
pedestrian’s surface to be non-planar solid. We can com-
pute P(gi |oi) and P(gi) by counting occurrences of each
value of gi in a training set. If oi is background, we consider
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P(gi |oi) ≈ P(gi). We estimate P(gi |eg) based on the con-
fidence maps of the geometric surfaces. In experiments, we
found that the average geometric confidence in a window is
a well-calibrated probability for the geometric value.

3.4 Inference

For tree-structured graphs like our model (Fig. 5), Pearl’s
belief propagation algorithm (Pearl 1988) is optimal and
very efficient. We simplify inference by quantizing continu-
ous variables v0 and yc into evenly-spaced bins (50 and 100
bins, respectively). Our implementation makes use of the
Bayes Net Toolbox (Murphy 2001). After inference, we can
pose queries, such as “What is the expected height of this
object?” or “What are the marginal probabilities for cars?”
or “What is the most probable explanation of the scene?”. In
this paper, we report results based on marginal probabilities
from the sum-product algorithm (this allows an ROC curve
to be computed). Figure 6 shows how local detections (g, h)
improve when viewpoint and surface geometry are consid-
ered (i, j).

4 Training

Viewpoint. To estimate the priors for θ , we manually la-
beled the horizon in 60 outdoor images from the LabelMe
database (Russell et al. 2005). In each image, we labeled
cars (including vans and trucks) and pedestrians (defined as
an upright person) and computed the maximum likelihood
estimate of the camera height based on the labeled horizon
and the height distributions of cars and people in the world.
We then estimated the prior for camera height using kernel
density estimation (ksdensity in Matlab).

Objects. Our baseline car and pedestrian detector uses a
method similar to the local detector of Murphy et al. (2003).
We used the same local patch template features but added
six color features that encode the average L*a*b* color of
the detection window and the difference between the detec-
tion window and the surrounding area. The classifier uses
a logistic regression version of Adaboost (Collins et al.
2002) to boost eight-node decision tree classifiers. For cars,
we trained two views (front/back: 32 × 24 pixels and side:
40 × 16 pixels), and for pedestrians, we trained one view
(16 × 40 pixels). Each were trained using the full PASCAL
dataset (PASCAL 2005).

To verify that our baseline detector has reasonable perfor-
mance, we trained a car detector on the PASCAL challenge
training/validation set, and evaluated the images in test set 1
using the criteria prescribed for the official competition. For
the sake of comparison in this validation experiment, we did
not search for cars shorter than 10% of the image height,

since most of the official entries could not detect small cars.
We obtain an average precision of 0.423 which is compara-
ble to the best scores reported by the top 3 groups: 0.613,
0.489, and 0.353.

To estimate the height distribution of cars (in the 3D
world), we used Consumer Reports (www.consumerreports.
org) and, for pedestrians, used data from the National Center
for Health Statistics (www.cdc.gov/nchs/). For cars, we esti-
mated a mean of 1.59 m and a standard deviation of 0.21 m.
For adult humans, the mean height is 1.7 m with a standard
deviation of 0.085 m. In Sect. 6, we show how to automati-
cally estimate distributions of camera viewpoint and object
heights using an iterative EM-like algorithm on a standard
object dataset.

Surface Geometry. P(gi |oi) was found by counting the
occurrences of the values of gi for both people and cars in
the 60 training images from LabelMe. We set P(gi) to be
uniform, because we found experimentally that learned val-
ues for P(gi) resulted in the system over-relying on geom-
etry. This over-reliance may be due to our labeled images
(general outdoor) being drawn from a different distribution
than our test set (streets of Boston) or to the lack of a mod-
eled direct dependence between surface geometries.

5 Evaluation

Our test set consists of 422 random outdoor images from the
LabelMe dataset (Russell et al. 2005). The busy city streets,
sidewalks, parking lots, and roads provide realistic environ-
ments for testing car and pedestrian detectors, and the wide
variety of object pose and size and the frequency of occlu-
sions make detection extremely challenging. In the dataset,
60 images have no cars or pedestrians, 44 have only pedes-
trians, 94 have only cars, and 224 have both cars and pedes-
trians. In total, the images contain 923 cars and 720 pedes-
trians.

We detect cars with heights as small as 14 pixels and
pedestrians as small as 36 pixels tall. To get detection con-
fidences for each window, we reverse the process described
in Sect. 3.2. We then determine the bounding boxes of ob-
jects in the standard way, by thresholding the confidences
and performing non-maxima suppression.

Our goal in these experiments is to show that, by model-
ing the interactions among several aspects of the scene and
inferring their likelihoods together, we can do much better
than if we estimate each one individually.

Object Detection Results. Figure 7 plots the ROC curves
for car and pedestrian detection on our test set when differ-
ent subsets of the model are considered. Figure 8 displays
and discusses several examples. To provide an estimate of

http://www.consumerreports.org
http://www.consumerreports.org
http://www.cdc.gov/nchs/
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Fig. 7 Considering viewpoint and surface geometry improves results
over purely local object detection. The left two plots show object detec-
tion results using only local object evidence (Obj), object and geometry

evidence (ObjGeom), objects related through the viewpoint (ObjView),
and the full model (ObjViewGeom). On the right, we plot results using
the Dalal-Triggs local detector (Dalal and Triggs 2005)

Fig. 8 (Color online) We show car and pedestrian results from our
baseline local detector (from Murphy et al. 2003) and after inference
using our model. The blue line shows the horizon estimate (always 0.5
initially). The boxes show detection estimates (green = true car, cyan
= false car, red = true ped, yellow = false ped), with the solid lines
being high confidence detections (0.5 FP/Image) and the dotted lines
being lower confidence detections (2 FP/Image). In most cases, the
horizon line is correctly recovered, and the object detection improves

considerably. In particular, boxes that make no sense from a geometric
standpoint (e.g. wrong scale (d), above horizon (b), in the middle of
the ground (e)) usually are removed and objects not initially detected
are found. Of course, improvement is not guaranteed. Pedestrians are
often hallucinated (c, e) in places where they could be (but are not).
In (f), a bad geometry estimate and repeated false detections along the
building windows causes the horizon estimate to become worse and the
car to be missed

how much other detectors may improve under our frame-

work, we report the percent reduction in false negatives for

varying false positive rates in Table 1. When the viewpoint

and surface geometry are considered, about 20% of cars and

pedestrians missed by the baseline are detected for the same

false positive rate! The improvement due to considering the

viewpoint is especially amazing, since the viewpoint uses no
direct image evidence. Also note that, while individual use
of surface geometry estimates and the viewpoint provides
improvement, using both together improves results further.

Horizon Estimation Results. By performing inference over
our model, the object and geometry evidence can also be
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Table 1 Modeling viewpoint and surface geometry aids object de-
tection. Shown are percentage reductions in the missed detection rate
while fixing the number of false positives per image

Cars Pedestrians

1 FP 5 FP 10 FP 1 FP 5 FP 10 FP

+Geom 6.6% 5.6% 7.0% 7.5% 8.5% 17%

+View 8.2% 16% 22% 3.2% 14% 23%

+GeomView 12% 22% 35% 7.2% 23% 40%

Table 2 Object and geometry evidence improve horizon estimation.
Mean/median absolute error (as percentage of image height) are shown
for horizon estimates

Mean Median

Prior 10.0% 8.5%

+Obj 7.5% 4.5%

+ObjGeom 7.0% 3.8%

Table 3 Horizon estimation and object detection are more accurate
when more object models are known. Results shown are using the full
model in three cases: detecting only cars, only pedestrians, and both.
The horizon column shows the median absolute error. For object de-
tection we include the number of false positives per image at the 50%
detection rate computed over all images (first number) and the subset
of images that contain both cars and people (second number)

Horizon Cars (FP) Ped (FP)

Car 7.3% 5.6 7.4 – –

Ped 5.0% – – 12.4 13.7

Car + ped 3.8% 5.0 6.6 11.0 10.7

used to improve the horizon estimates. We manually labeled
the horizon in 100 of our images that contained both types
of objects. Table 2 gives the mean and median absolute er-
ror over these images. Our prior of 0.50 results in a median
error of 0.085% of the image height, but when objects and
surface geometry are considered, the median error reduces
to 0.038%. Notice how the geometry evidence provides a
substantial improvement in horizon estimation, even though
it is separated from the viewpoint by two variables in our
model.

More is Better. Intuitively, the more types of objects that
we can identify, the better our horizon estimates will be,
leading to improved object detection. We verify this experi-
mentally, performing the inference with only car detection,
only pedestrian detection, and both. Table 3 gives the accu-
racy for horizon estimation and object detection when only
cars are detected, when only pedestrians are detected, and
when both are detected. As predicted, detecting two objects
provides better horizon estimation and object detection than
detecting one.

Dalal-Triggs Detector. To support our claim that any lo-
cal object detector can be easily improved by plugging it
into our framework, we performed experiments using the
Dalal-Triggs detector (Dalal and Triggs 2005) after convert-
ing the SVM outputs to probabilities using the method of
Platt (2000). We used code, data, and parameters provided
by the authors, training an 80 × 24 car detector and 32 × 96
and 16 × 48 (for big and small) pedestrian detectors. The
Dalal-Triggs local detector is currently among the most ac-
curate for pedestrians, but its accuracy (Fig. 7) improves
considerably with our framework, from 57% to 66% detec-
tions at 1 false positive (FP) per image. Similarly, the car
detection rate improves from 45% to 50% at 1 FP per im-
age.

Integration is Important. In our model, surface and object
information is integrated through a single camera viewpoint.
What if we instead simply marginalized out the viewpoint
prior over each object separately, essentially providing only
a position/size prior for the objects? To find out, we re-ran
our experiments using the Dalal-Triggs detectors after mak-
ing this change. Our fully integrated model outperforms the
weaker marginalized model by 5% (cars) and 8% (pedestri-
ans) detection rate at 1 FP per image.

6 Viewpoint by Example

One of the benefits of our proposed system is the ability to
recover camera viewpoint from a single image using the de-
tections of known objects in the scene. But what if the im-
age does not include any easily detectable known objects?
This makes the problem extremely difficult. Solutions based
on edges and perspective geometry, such as methods by
Kosecka and Zhang (2002) and Coughlan and Yuille (2003),
show good results for uncluttered man-made scenes with
lots of parallel lines (the so-called Manhattan worlds), but
fail for less structured environments. Inspired by work in
pre-attentive human vision, Oliva and Torralba (2006) con-
vincingly argue that simple spatial-frequency statistics (the
“gist”) of the image may be sufficient to recover a general
sense of the space of the scene. They show some impres-
sive results on estimating rough “scene envelope” proper-
ties such as openness, smoothness and depth by matching to
a small number of manually labeled training images. Tor-
ralba and Sinha (2001) suggest that gist statistics could also
provide a rough estimate of the horizon position. But to ob-
tain more precise estimates, we require (1) a large amount of
training data and (2) a way of accurately labeling this data.

Here we propose to solve both of these issues by ap-
plying our object-viewpoint model to automatically recover
camera viewpoint parameters of images in a standard ob-
ject recognition database. The resulting large dataset of im-
age/viewpoint pairs then allows us to use the gist descriptor
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Fig. 9 Automatic object height estimation. Objects taken from a typical image in LabelMe dataset (left) are first shown in their original pixel size
(center), and after being resized according to their automatically estimated 3D heights (right)

in a simple example-based approach to compute viewpoint
estimates for a novel image. Moreover, we can use this in-
formed viewpoint estimate in place of our simple Gaussian
prior (Sect. 3.1) to improve the object detection results of
our overall system.

6.1 Discovery of Viewpoint and Object Size

Example-based techniques require many training samples to
attain good performance. Manual labeling of camera view-
point is tedious and error-prone, so we automatically recover
the camera viewpoint and 3D object sizes in the LabelMe
database (Russell et al. 2005). Our method, described in
Lalonde et al. (2007), iterates between estimating the cam-
era viewpoint for images that contain objects of known size
distributions and estimating the size distributions of objects
that are contained in images with known viewpoints. After
initially providing only a guess of the mean and standard de-
viation height of people, we infer the camera viewpoint of
over 5,000 images and heights of 13,000 object instances in
roughly fifty object classes. Figure 9 shows an example of
our automatic height estimation for people in an image.

Based on the inferred object heights, we re-estimate the
3D height distributions of cars (mean of 1.51 m, standard
deviation of 0.191 m) and people (mean of 1.70 m and stan-
dard deviation of 0.103 m). We consider the camera view-
point estimates to be reliable for the 2,660 images (exclud-
ing images in our test set) that contain at least two objects
with known height distributions. Using the publicly avail-
able code, we compute the gist statistics (8 × 8 blocks at
3 scales with 8, 4, 4 orientations, giving 1280 variables per
gist vector) over these images, providing a training set for
viewpoint estimation.

6.2 Recovering the Viewpoint

In early experiments on our training set, we found that an
image and its nearest neighbor (Euclidean distance in gist)
tend to have similar horizon positions (correlation coeffi-
cient of 0.54). Using cross-validation, we evaluated nearest

Table 4 We show the mean error (as a percentage of image height) in
horizon position estimation using a Gaussian prior, after considering
surface geometry and objects (using the Dalal-Triggs detectors), our
initial gist-based estimates, and after the full inference

Prior P + ObjGeom Gist G + ObjGeom

Mean error 10.0% 4.3% 5.7% 3.8%

neighbor classifiers with various distance metrics, the near-
est neighbor regression method of Navot et al. (2006), and
generalized regression neural networks (newgrnn in Mat-
lab). The last of these (GRNN) provides the lowest cross-
validation error, after tuning the spread α = 0.22 on our
training set. The horizon estimate from the GRNN is given
by

ṽ0(x) =
∑

i v0iwi∑
i wi

with wi = exp

[−‖x − xi‖2

2α2

]
(13)

where x is the gist statistics and v0i is the horizon position
for the ith training sample.

Empirically, the true horizon position v0 given the regres-
sion estimate ṽ0 has a Laplace probability density

p(v0|ṽ0) = 1

2sv
exp

[−|v0 − ṽ0|
sv

]
(14)

where sv is the scale parameter and is equal to the expected
error. We found a correlation (coefficient 0.27) between er-
ror and Euclidean distance to the nearest neighbor in gist
statistics. Therefore, we can provide better estimates of con-
fidence by considering the nearest neighbor distance. We
fit sv = 0.022 + 0.060d̃ by maximum likelihood estimation
over our training set, where d̃ is the nearest neighbor dis-
tance.

We were not able to improve camera height estimates sig-
nificantly over our prior estimate, probably because a small
change in camera height has little impact on the global im-
age statistics. We, therefore, simply re-estimate the camera
height prior as in Sect. 4 using our larger training set.



Int J Comput Vis (2008) 80: 3–15 13

Fig. 10 Horizon estimation. We show horizon estimation results (solid line) with 50% and 90% confidence bounds (dashed lines) for several test
images with the gist nearest neighbor and distance d̃

Fig. 11 (Color online) We show local object detections (left) of Dalal-
Triggs (green = true car, cyan = false car, red = true ped, yellow
= false ped) and the final detections (right) and horizon estimates
(blue line) after considering surface geometry and camera viewpoint
(initially estimated using our example-based method). Our method
provides large improvement (+7%/11% for peds/cars at 1 FP/image)
over a very good local detector. Many of the remaining recorded “false

positives” re due to objects that are heavily occluded (a, e) or very diffi-
cult to see (e) (i.e., missed by the ground truth labeler). In (h), a missed
person on the right exemplifies the need for more robust assumptions
(e.g., a person usually rests on the ground plane) or explanation-based
reasoning (e.g., the person only looks so tall because he is standing on
a step)

6.3 Evaluation

In Table 4, we show that our example-based method for es-
timating the horizon position far outperforms the prior esti-
mate (image center) and improves further when objects and
surface geometry are considered. In Fig. 10, we show several
examples of test image, the nearest neighbor in our train-
ing set, and the estimated horizon. Our gist-based horizon

estimates provide improvement in object detection as well,
with detection rates increasing from 50% to 52% for cars
and from 66% to 68% for pedestrians, at 1 false positive
per image using the Dalal-Triggs object detectors. We show
several examples of improved detection in Fig. 11.

In summary, we can accurately estimate the horizon po-
sition from the gist statistics, providing: (1) a better final
estimate of the horizon after considering objects and surface
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Fig. 12 (Color online) We project the estimated ground surface into an
overhead view, using the estimated camera viewpoint, and plot scaled
icons of objects (red dots for pedestrians) at their detected (using Dalal-

Triggs) ground positions. Car orientation is estimated by a robust line
fit, assuming that cars mostly face down the same line. To plot in metric
scale, we assume a typical focal length

geometry; and (2) improved object detection. These exper-
iments nicely reinforce the key idea of this paper: with ap-
propriate integration, improvement in one task benefits the
others.

7 Discussion

In this paper, we have provided a “skeleton” model of a
scene—a tree structure of camera viewpoint, objects, and
surface geometry. We demonstrate our system’s understand-
ing of the 3D scene in Fig. 12.

Our model makes several assumptions and approxima-
tions: all objects rest on the same ground plane; objects are
perpendicular to the ground; camera tilt is small to moder-
ate; camera roll is zero or image is rectified; camera intrin-
sic parameters are typical (zero skew, unit aspect ratio, typ-
ical focal length); and object and surface evidence are con-
ditionally independent given the labels. Of these, the first
is the most limiting and could be relaxed simply by using
a mixture model in which objects are likely to rest on the
same plane but could be anywhere with non-zero probabil-
ity. A repeated feature in the image, such as the building
windows in Fig. 8f, can cause object detection responses
to be correlated and an incorrect scene interpretation to re-
sult. Modeling these correlations (for example, if two ob-
ject patches are very similar, consider their evidence jointly,
not as conditionally independent) could improve results. The
other approximations cause graceful degradation when vi-
olated. Our model makes no assumptions about the scene
(e.g., forest vs. urban vs. indoor), but the surface classi-

fier used in our experiments was trained on outdoor images
only.

Our model-based approach has two main advantages over
the more direct “bag of features/black box” classification
method: (1) subtle relationships (such as that object sizes
relate through the viewpoint) can be easily represented; and
(2) additions and extensions to the model are easy (the di-
rect method requires complete retraining whenever anything
changes). To add a new object to our model, one needs only
to train a detector for that object and supply the distribution
of the object’s height in the 3D scene. Our framework could
also be extended by modeling other scene properties, such as
scene category. By modeling the direct relationships of ob-
jects and geometry (which can be done in 3D, since perspec-
tive is already part of our framework) further improvement
is possible.

As more types of objects can be identified and more
aspects of the scene can be estimated, we hope that our
framework will eventually grow into a vision system that
would fulfill the ambitions of the early computer vision
researchers—a system capable of complete image under-
standing.
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